Party Strategy or Candidate Strategy:

How Did the LDP Run the Right Number of Candidates in Japan’s Multi-Member Districts?

Steven R. Reed
Faculty of Policy Studies
Chuo University
sreed@fps.chuo-u.ac.jp

I would like to thank Mitsuo Kono, Liam Weeks, Bernard Grofman, Ray Christensen, Yusaku Horikuchi, Kiichiro Arai and the participants in the Stanford University Comparative Politics Workshop for their helpful comments on earlier drafts of this paper. In addition, I could not have completed the simulation without Mitsuo Kono’s help.
Party Strategy or Candidate Strategy:

How Does the LDP Run the Right Number of Candidates in Japan's Multi-Member Districts?

Abstract
Under the single non-transferable vote (SNTV) political parties are faced with the strategic problem of matching the number of candidates to their vote total. Running either too many or too few candidates may lose a seat that could otherwise have been won. Many studies have confirmed that Japan’s Liberal Democratic Party (LDP) solved this strategic problem well and ran close to the optimal number of candidates. Each of these studies makes the standard unitary actor assumption, that the LDP can be understood as if it were a single individual maximizing its total number of seats in the Diet. Even though these unitary actor models have produced an impressive account of LDP nomination policy I argue for an alternative decentralized model based on candidate strategy. The mechanism producing the optimal number of LDP candidates per district is not strategic decision making by the party headquarters but competition among strategic candidates.
Under the single non-transferable vote (SNTV) in multi-member districts electoral system used to elect the Japanese House of Representatives from 1947 through 1993 political parties were faced with the strategic problem of matching the number of candidates to their total vote. Running too many or too few candidates risked losing a seat that could have otherwise been won. A party might, for example, be able to win three seats in a five-member district if it ran three candidates but could only win two seats if it ran four. If it ran three candidates they would finish third, fourth and fifth and, since the first through the fifth candidates were awarded seats in a five-member district, all three candidates would be elected. If the party ran four candidates, however, they might finish fourth, fifth, sixth and seventh, leaving the latter two candidates without seats. This was known in Japanese as tomodaore (falling together) and avoiding tomodaore was the primary goal of nomination policy.

Studies of nomination strategy under this electoral system have been driven by the question of whether the resulting number of nominees is the number that would be expected if the party followed a “rational” seat-maximizing nomination strategy (Reed 1990, 2003; Cox and Niou 1994; Cox and Rosenbluth 1994, 1996; Christensen and Johnson 1995; Christensen 1996, 2003; Browne and Patterson 1999; Baker and Scheiner 2004; Horiuchi and Kohno 2004). Most of these studies make the standard unitary actor assumption, that the LDP can be understood as if it were a single rational individual maximizing his total number of seats in the Diet. Reed (1990) is a partial exception, arguing that the mechanism producing the M+1 rule is not rational calculation but trial-and-error learning, but the actor doing the learning still appears to be a unitary political party. A clear break with the unitary actor model was made more or less simultaneously by Christensen (2003) and Reed (2003). Both argue for a decentralized, candidate-based model. I will build upon these studies and develop a formal agency-based model of candidate strategy.

I begin by reviewing the party model and its successes. The unitary actor model does indeed explain both the preferences of the LDP leadership and the long-run equilibrium number of
LDP candidates per district. Next I present an alternative candidate-based model. This model will be implemented with an agent-based simulation model, each agent using a simple decision rule. All that is necessary to reduce the number of candidates to the $M+1$ equilibrium is that candidates who win run again but candidates who lose have some probability greater than zero of retiring without being replaced. I am not arguing for “a more nuanced approach” but rather for a different kind of formal model. The simulation presented here will be based on empirical regularities but will also be incomplete and atheoretical. It is designed solely to demonstrate the plausibility an explanation based on candidate strategy and the potential of a formal model implemented by simulation techniques.

Having demonstrated the plausibility of a candidate-centered model, I then compare it to the unitary actor model. First, I discuss the phenomenon of LDP-affiliated independent candidates. I find that the LDP leadership was unable to prevent independent candidates from standing and was therefore unable to control the number of conservative candidates running in a district. The LDP may not have been able to control the number of candidates, but it could decide whom to nominate. I therefore review historical data on formal LDP nomination policy. I find that although formal nomination policy was consonant with the policy predicted by the unitary actor model, the party was incapable of implementing its stated policy. Finally, I use statistical data to analyze effective nomination policy. I find that the LDP nominated winners and deselected losers, effectively leaving the choice up to the voters. The effective nomination policy was *kateba Jimintou* (“if you win, you are LDP”, a decision rule reminiscent of Chicago Mayor Richard Daly’s famous, “don’t back no losers”). By leaving the decision up to the voters, the LDP gave up trying to be a unitary actor and transformed itself into an arena in which candidates could compete virtually free of ideological, organizational, or strategic constraints. Candidates need not agree with party policy or maintain party discipline, they need only win.
Both formal models explain the $M+1$ equilibrium. The differences arise in the mechanisms adduced to explain the same outcomes.

The Unitary Actor Model

One must begin by acknowledging the fact that the unitary actor model provides an impressive account of LDP nomination policy. Starting from the bare minimum assumptions of the rational choice approach, one first calculates the optimal number of candidates that a seat-maximizing party would run. One then posits that the party has an incentive to run the optimal number of candidates and that this incentive will be reflected in the party’s preferences. Finally, one tests the proposition by estimating the proportion of districts which actually do run the optimal number of candidates.

The model succeeds impressively: the LDP leadership did indeed make every effort to run the predicted number of candidates and the actual number of candidates running in a district soon converged to a value close to the predicted value. The LDP leadership got the result they wanted and the resulting number of candidates per district worked out quite well for the party as a whole. One might well be completely satisfied with this account and ask no further questions. If, however, one does ask further questions, one finds that the LDP was not necessarily in control. There was a gap between what the party leadership intended and what it was able to accomplish. The results of the unitary actor model are correct but the mechanism that produced those results was not an authoritative decision by the party headquartered.

The LDP leadership did, of course, have the authority to nominate whomever they wished. For three reasons, however, this formal authority did not translate into effective control. First and foremost, the LDP could not prevent candidates who were refused the nomination from running as independents. Because the party had no grass-roots organization of its own and depended upon the personal support organizations of individual candidates (kouenkai), denying a candidate the
nomination did not prevent him either from running or from winning.

Second, independents who won were routinely admitted into the legislative party and nominated in the next election. The party was thus unable to punish independents for defeating party nominees. In fact, running without a nomination was one well-known route to getting a nomination (Curtis 1971:12). Independent candidates were normally supported by one of the LDP’s several intraparty factions and that faction would lobby for him in the party councils. The party leadership used nomination policy to increase the size of their own factions (Cox and Rosenbluth 1996) forcing the internal opposition to depend more upon independent candidacies. Any attempt to punish independents was thus seen as a power play designed to keep the current leadership factions in power and was bitterly opposed by the internal opposition.

Finally, after several failed attempts to exercise control over independent candidates, the leadership began to avoid conflict by leaving the decision up to the electorate. Japanese-style “consensus decision making” means many different things but one standard cultural repertoire is avoiding conflict by using “objective” criteria. Here “objective” means that no one need take responsibility for the decision. Choosing candidate A over candidate B makes an enemy of candidate B, who might well win a seat and join the party after the election. Leaving the decision up to the voters makes no such enemies.

The result of leaving the decision up to the voters was periodic episodes of ranritsu, an excessive number of LDP candidates. It is tempting to call this phenomenon “over-nomination” but since many of the excess LDP candidates were running without the nomination, I will use the Japanese term ranritsu to describe the phenomenon. Even so, in most districts most of the time, the number of LDP candidates including independents approximated what one would expect from a rational unitary actor. Who made this “rational” decision? The answer is that no one did. Instead, the number of candidates approached the optimum “as if moved by an invisible hand”. The mechanism
producing a given number of candidates in a given district was simply that winners tended to run again while losers sometimes withdrew.

A Strategic Candidate Model

If LDP nomination policy did not determine the number of LDP candidates running in a district, what did? I argue that the key is to be found not in the strategic behavior of party leaders but in the strategic behavior of candidates. The key to understanding when the number of LDP candidate in a district will increase and when it will decrease is a matter of understanding candidate decision rules. We need to know how LDP candidates decide to retire, how they decide whether to succeed a retiring candidate, and how they decide to run in a district even though no one has retired. I will present a simple agency-based simulation below, but first I estimate the parameters need for the simulation on empirically.

I have designed a data set to investigate when the number of candidates in a given district goes up and when it goes down. In multimember districts a candidate need not try to represent the whole district or even half of it. Instead, he must organize his own constituency from specific geographical areas and interest groups. These *ad hoc* constituencies are called *jiban* in Japanese and I thus call this the *jiban* data set.

Jiban are, to some extent, the functional equivalent of political parties. When, for example, a candidate from the British Conservative Party retires, she is replaced by another Conservative candidate. In Japan’s multimember districts, the LDP ran more than one candidate in most districts so identifying successors is less obvious but, in most cases one can match retirees with their successors and the task becomes simpler over time as *jiban* become more institutionalized. Where there is ambiguity I give first priority to relatives and second priority to success. If none of the potential successors are related to the retiring candidate, the candidate who won the most votes is
coded as the successor. I have thus purposefully biased the data set toward success and continuity. Any new candidate may be considered a successor of any retiring candidate if contextual knowledge does not identify a specific successor. Nevertheless, the resulting bias cannot be very large because of the high percentage of cases in which there is no doubt about the identity of the successor.

Cases in the jiban data set consist of a series of candidates and their successors. The dependent variable of interest is EXIT, a dummy variable that takes the value of 1 when a candidate retires and is not succeeded thus reducing the total number of LDP candidates and of LDP jiban in the district. For present purposes, I have analyzed EXIT for LDP candidates only.

As one might expect, winners seldom exit. As seen in Table 1, only 1 percent of winners exit but even this low figure demands some explanation. The most common explanation is what might be called a “staggered succession”. When an established incumbent is growing older and must retire in the near future, an aspirant might wish to hurry the process along or to establish his own credentials in the impending battle for succession. The aspirant runs and loses but puts enough pressure on the incumbent that the latter is forced to retire. At election t one observes the challenger and the incumbent running against each other, raising the total number of LDP candidates in the district by one. At election t+1, the challenger continues to run but the winning incumbent retires. Because no new candidate runs the number of LDP candidates goes down by one. In many senses, the challenger did indeed succeed the retiree but the process resembled a hostile takeover more than an orderly succession. I will not deal with the complexity of staggered successions in this paper but instead focus on the simpler case of losers who exit from the district.

[Table 1 about here]

For LDP losers a rather elegant pattern emerges. If one calculates the probability of EXIT
by the rank of the candidate in the previous election, the results closely approximate the following formula: the probability of jiban exit equals approximately 0.15 times (rank - district magnitude). The runner-up (the M+1st candidate) exits with a probability of 0.15, the second runner-up (M+2nd candidate) exits with a probability of 0.30, the third runner-up (M+3rd candidate) exits with a probability of 0.45, with the probability of exiting rising by about 0.15 as one proceeds each rank down the list. I will use this formula to drive the simulation.

The voter decision rule is to choose from among the LDP candidates randomly. There are a set number of LDP supporters in a district and each voter has an equal probability of voting for each of the candidates running. The candidate decision rule is, if you win run again, but if you lose base your decision upon your rank in the previous election with the probability calculated above. After each election voters choose again from among the remaining candidates. (See Appendix A for the full program.)

This simulation is based upon data analysis and is thus empirically accurate, but it also omits a great deal. Both the analysis and the simulation omit the entry of candidates who are starting a new jiban. The number of candidates thus decreases but never increases, making the “final” equilibrium M+0, only winners running. Jiban entry is a difficult problem that awaits further analysis. A second problem is that the exit decision rule is empirically accurate but not behaviorally realistic. I do not imagine that LDP candidates actually roll dice to decide whether or not to run in a forthcoming election. The elegant empirical result emerges from some other, more practical, decision rule. We would like to know and model actual candidate decision rules, not merely mimic empirically accurate outcomes but those decision rules also await further empirical analysis. Finally, I have yet to model either the entry or exit of the opposition parties because I have yet to find an empirical result that I could use in a simulation model. I have therefore simulated two parties both using the same decision rules.
The simulation presented here is just a starting point for a more complete formal model. Yet even this simple model should serve to illustrate the plausibility of a candidate-based model.

Figure 1 presents the average results for ten districts for two parties (both operating under LDP decision rules) with an equal number of votes both running five candidates in a five-member district. Because each party has half of the vote, the optimal number of candidates for either should be no more than three. When both parties reach their optimal number of candidates, there will be no more than six candidates, as predicted by the M+1 rule. The figure traces the total number of candidates so it shows how jiban exits in both parties result in the M+1 equilibrium.

This exercise produces two notable results. First, and unsurprisingly, the number of candidates does indeed approach the M+1 equilibrium. The model thus illustrates the point that a candidate-centered model can yield the same results as the unitary actor model. Second, and somewhat more surprisingly, even after fifteen elections some districts have yet to reach equilibrium as reflected in the fact that the average remains somewhat above six. This result illustrates the point that a candidate-centered model addresses (though it does not yet answer) one question that the unitary actor model does not address: how long does it take to reach equilibrium?

I now turn to two sets of data, one historical and one empirical, to evaluate the two models.

Counting LDP Candidates: The Problem of Independents

In each election some candidates who applied for an LDP nomination were turned down. Some ran anyway as independents. Newspapers often noted the fact when a candidate fails to get the
nomination. The term used was “kounin more,” candidates who “leaked” out of the nomination process, a phrase akin to “falling between the cracks.” I will call these “non-selected” candidates Liberal Democratic Independents, or LDI, to distinguish them from Liberal Democratic Party (LDP) nominees.

Not only did these LDI independents seek the LDP nomination, they were also drawn from precisely the same pool as LDP nominees. LDI candidates were conservative local assemblymen who belonged to the LDP legislative group in the assembly though they, just like LDP nominees, had often run without a party nomination in local politics. The other major source of LDP candidates was the bureaucracy, and retired bureaucrats were also forced to run without the nomination. LDI candidates were also the sons (or less often daughters) of retiring LDP Diet members. Indeed, many party leaders started their careers running as LDI candidates.

With a very few exceptions, LDI candidates thus came from the same pool as LDP nominees but a different pool from the major opposition parties. Suzuki Zenko, who later served as LDP party leader and prime minister, ran for the Socialists in his first election in 1947. In the 1970s a few LDI candidates tried to use support from the Democratic Socialist Party to win one election and then transfer to the LDP. They found, however, that they could not win a second election after having switched parties. LDI candidates were the primary recruiting ground for LDP splinter parties. In 1976 the New Liberal Club was formed from LDP defectors and candidates who would have otherwise have run as LDI independents. This splinter was, however, absorbed back into the LDP in 1986 thus behaving very much like ordinary LDI candidates. Though there were these several minor exceptions to the rule of separate candidate pools, the first major exceptions emerged only in 1993 when three new conservative parties were formed unseating the LDP and changing the party system.

LDI candidates also drew on precisely the same pool of voters as LDP nominees. This is
indicated, first and foremost, by the LDP leadership’s efforts, described in detail below, to get LDI candidates to stand down. In addition, statistical analysis based of the LDP vote that excludes LDI candidates produces many anomalies. The most egregious example is Tanaka Kakuei in 1976. Tanaka was, by all accounts, the most powerful politician in the LDP, leader of the largest LDP faction, and the king-maker who decided who would be party leader and thus the Prime Minister. From the 1976 through the 1986 elections, however, Tanaka ran as an independent because he was under investigation in the Lockheed Scandal. If one considers only nominated candidates, the LDP vote in Tanaka’s Niigata 3rd district dropped from 53 per cent of eligible voters to only 21 per cent in 1976. If you count Tanaka’s vote as part of the LDP vote, the party received 53 per cent in both elections. The latter is the proper calculation. The LDP vote did not drop in Niigata 3rd district. One LDP candidate simply ran as an independent. Similar examples abound.

The party itself also treated LDI candidates as potential or quasi party members. LDI candidates were normally supported by one of the institutionalized factions within the party. Whenever an LDI candidate won, even if he defeated an LDP incumbent in the process, he joined the party soon after the election. Sometimes LDI candidates were forced to wait a decent interval before being allowed to take their places in the majority party, but between its founding in 1955 and 1993, the last election held under SNTV, the LDP never once refused to accept a winning candidate back into the fold. Instead of punishing those who violate party discipline, the party rewarded successful violations by nominating the winners *ex post facto*.

A second type of LDI candidate is an incumbent running without the nomination because of involvement in a corruption scandal. Many voters will continue to vote for the scandal-tainted incumbent whether he is nominated or not. The candidate, not wishing to appear to admit guilt, has every incentive to run. The party could not prevent him from running but does not wish to be associated with a potential felon. The obvious solution is to temporarily separate the candidate and
party images as much as possible by having the candidate run as an independent. In many cases, the candidate received the official endorsement of the local LDP party branch even though he was not nominated by the national party headquarters. In any case, he is very much an LDP candidate, in all but the formal legal sense.

Most political parties are perfectly capable of preventing candidates from running as independents against the wishes of the leadership and most would not accept such a candidate into the party even if she won a seat. Most parties are much more coherent organizations than is the LDP. The LDP is not, however, unique. In Ireland, which also uses a multi-member district electoral system that forces candidates from the same party to run against each other, there are cases of candidates running as independents because of a corruption scandal (Galligan 2003:51). Similarly, in the 2002 election to the French National Assembly, the President Chirac managed to force a merger between the two major right-wing groups in a fashion reminiscent of the founding the LDP. Some conservative candidates, however, ran without the official label but with blessing of one of the previous groups (Knapp 2003:124). Similar choice sets produce similar choices. The LDP is a particularly incoherent party because of its history and the political and electoral systems within which it operated.

The success rate of LDI candidates was low. Only about 20 per cent of non-incumbent LDI candidates won seats as opposed to over 60 per cent for LDP nominees (calculated from Browne and Kim 2003:118). Nevertheless, LDI candidates did win sometimes and often split the conservative vote causing the LDP to lose seats they could have otherwise won. In other words, ranritsu sometimes produced tomodaore and the primary cause of ranritsu was LDI candidates.

Official Nomination Policy
The LDP was formed from the merger of the Liberal and Democratic Parties after the 1955 election. The party faced serious nomination problems in its first election in 1958 which it has yet to solve. In 1958, the LDP established three simple rules to guide its nomination policy. First, the party would not nominate more candidates than the number of seats in the district. Nominating four candidates in a three-member district, for example, may serve some purpose but it is clearly not the optimal strategy for maximizing the number of seats won with a given number of votes. Second, the party would nominate no candidate who was under criminal investigation. Third, the party would strive to nominate only candidates who had a chance of winning. These rules seem straightforward enough and the nomination decisions made were very close to that predicted by the unitary actor model. However, the LDP proved incapable of enforcing even these seemingly simple rules.

On May 1st, only 21 days before the vote, the party decided to issue “certificates of party membership” (touseki shoumeisho) to 29 non-selected candidates (Asahi Shinbun, hereafter AS, May 1, 1958). These certificates amounted to quasi nominations. Candidates were allowed to use the party label on their posters and party members were allowed to campaign on their behalf. All 29 were running in any case and were supported by factions within the LDP’s Diet delegation, by local LDP elected and party officials and, of course, by their own kouenkai.

The 29 candidates were running in 23 different electoral districts. Seven candidates were under criminal investigation at the time. In thirteen districts, nominating the candidate(s) in question would have resulted in more nominees than seats, violating the first nomination rule. In six of these thirteen, the party could have nominated one of two candidates without exceeding the district magnitude, but could not decide which one to nominate and therefore nominated neither. In one district, the party could have nominated a newcomer without exceeding the district magnitude but had already denied the nomination to an incumbent who was under criminal investigation. Having denied the incumbent, the party could not bring itself to nominate the newcomer.
When election day rolled around, all 29 candidates had an official LDP nomination. The LDP regularly issues “supplemental nominations” (tsuika kounin) to LDI candidates after the election has begun or right after it is over. Indeed, supplemental nominations were routinely awarded to all LDI candidates who win on the day after the election. The 29 candidates who were not nominated before the election but were issues certificates of party membership after the election had started received supplemental nominations sometime during the election campaign. Seven were in fact elected.

The LDP leadership established reasonable decision rules which produced a “rational” nomination policy but failed to enforce the rules and wound up nominating “too many” candidates. The explanation for this behavior lies not in the “irrationality” of the leadership but in their choice set. Realistically, the party had only two choices, either include LDI candidates and their supporters in the party or exclude them. The “rational” solution of running an optimal number of nominees was not an option because the party could not prevent LDI candidates from running.

The LDP leadership made their next serious effort to solve their LDI problem in the 1967 election. A series of corruption and abuse of power scandals conveniently labeled the “Black Mist” by the mass media plagued the party. The LDP majority had been getting thinner at each successive election and the party was worried that they might actually lose power. Secretary-general Fukuda led the effort to prevent LDI candidates from siphoning off too many votes from official nominees. The party identified seventeen districts in which independents threatened to lose seats for the party (AS 14 January 1967). Fukuda did not ask the LDI candidates to stand down, presumably because he knew it would be futile. He merely asked them not to campaign too hard. Nevertheless, the intraparty opposition factions rebelled. They organized the “Purified LDP Alliance” (Jimin Shukutou Doumei) to support the LDI candidates (AS 17 January 1967). These seventeen independents were thus given what amounted to opposition faction LDP nominations.
The party leadership was able to get LDI candidates to withdraw in only two of the seventeen districts. In four districts, LDI candidates did indeed produce a *tomodaore* losing the party a seat. However, in two other districts, the party won an extra seat due to the presence of a popular (and thus victorious) LDI whose candidacy increased the total LDP vote. In the remaining nine districts, the LDP won the same number of seats as in the previous election and the offending LDI candidates were defeated. As Browne and Patterson (1999) have demonstrated, “nomination errors” do not necessarily result in a loss of seats. In 1967, the party was unable to control the number of candidates running but lost a net of only two seats due to that failure.

Thereafter the party leadership continued to complain about *ranritsu* (it is, for example a constant theme in the elections analyses presented in the volumes edited by Soma, 1970, 1974, 1985, 1987), but they were never again able to mount a serious attempt to control LDI candidacies. In the 1970s candidates who were refused the LDP nomination sometimes ran with the support of centrist opposition parties. Especially in the 1976 and 1993 elections, LDI candidates were the primary recruiting grounds for reformist conservative parties.

The LDP thus proved incapable of controlling the number of candidates running in a district. It was forced to leave the decision up to the voters. Leaving the decision to the voters provided the party with an “objective” way to resolve intra-party disputes. Party officials at both the national, prefectural and district levels avoided making any controversial decisions that might exacerbate internal tensions by leaving things up to the voters. Often, when an LDP incumbent retires, several newcomers vie to take his place. The LDP often makes no decision whatsoever, letting all of them run as independents and nominating the victor after the fact. Whoever wins is declared the nominee *ex post facto*. This (non-) decision rule is completely objective. No one can argue that the party leadership favored a particular faction or a particular geographical area. The practice also demonstrates how objectivity need not imply rationality. It is objective in the
bureaucratic sense of avoiding responsibility. Objectivity implies only that no judgement was exercised, not that the final decision was the correct one.

The party leadership was unable to control the number of LDP candidates but was neither completely passive nor without influence. First, as I shall demonstrate below, nominations were used strategically, albeit with limited effect. In addition, the leadership sometimes managed to talk potential candidates into waiting until a nomination became available. More persuasive yet was a nomination to some other office. The solution to ranritsu was often to offer one of the excess candidates a nomination to the House of Councillors or a local executive office. Unfortunately, however, this often proved to be a revolving door because candidates who lost upper house, gubernatorial or mayoral elections were also likely to run for the Diet, whether nominated or not, and enjoyed a high rate of success.

The LDP leadership also dealt with their independent problem when discussing electoral reform. One consistent goal of reform was party-centered, as opposed to candidate-centered, elections. Thus, many proposals contained provisions that would advantage party nominees over independent candidates. Opposition factions consistently opposed these proposals and reform failed repeatedly until 1994. The 1994 reform enacted a mixed system of single-member districts and proportional representation (Christensen 1994). It also contained many provisions that disadvantaged independent candidacies. Electoral reform has already gone a long way towards solving the LDP’s independent problem. The norm of one LDP candidate per district has been established and exceptions are slowly being eliminated. At least until the 2005 election, the fourth election under the new system, the party still allowed any non-selected candidate that wins back into the party, but the 1994 reforms did represent a partial victory of the LDP leadership in its war against LDI candidates.
Effective Nomination Policy

Above we examined the formal rules that are supposed to guide LDP nomination policy and found that they are not necessarily enforced. In this section, I will analyze rules that actually govern the LDP’s nomination decisions. The data set for this analysis consists of all LDP candidates, whether nominated or not, who ran between 1960 and 1993. Because we are interested in changes in a candidate’s vote, only continuing candidates are included, those who ran in both the current and the previous election. Each case thus represents not a candidate in a particular election but a transition from one election to the next. The dependent variables of interest are GAINED NOMINATION and LOST NOMINATION. Each is a dummy variable, the former for those who ran as independents in the previous election but received the nomination in the current election, the latter for those who ran with the nomination in the previous election but lost the nomination in the current election.

Turning first to GAINED NOMINATION, we find that the answer to how to gain an LDP nomination is simple: just win. Of the 165 candidates who gained nominations between elections, 105 or 64 per cent had won as independents in the previous election. The LDP nominates winners. The exceptions tend to be district-level battles. In Hyogo 4th district, for example, two candidates who had won the 1960 election ran without the nomination in the following 1963 election. One had run with and the other without the nomination in 1960 but in 1963 the party thus had two new incumbents plus several previously elected candidates which added up to more than the optimal number of candidates for the district. The party decided to nominate neither new incumbent and leave it up to the voters. The 1963 winner was then nominated in the following 1967 election and the loser admitted defeat and withdrew.

Multivariate analysis estimated through a logistic regression confirms this simple point. For this analysis I include only candidates who ran as independents in the previous election and ask which ones were nominated in the subsequent election. I tested four independent variables. The first
is whether the candidate won or lost the previous election. The next is whether the candidate finished runner-up in the previous election, hypothesizing that almost winning would also make it easier to get the nomination. One of the primary functions of LDP factions is to help their candidates get nominations so I entered a dummy for members of factions of either the Prime Minister or the Secretary-General. Previous analysis has used the distinction between mainstream versus anti-mainstream factions, but I follow Asano (2003) in using the factions of the two most powerful party officials. Mainstream factions are easily identified in the 1950s but the distinction becomes increasingly difficult to make as time passes. Most observers agree that the distinction loses all meaning after 1980. The PM-SG variable is thus the more valid indicator.

Finally, I coded a variable STRATEGY to test whether the LDP takes strategic factors into account when deciding on nominations. I first divided the LDP vote by the Droop Quota to estimate the number of the candidates that the LDP should have run if it were maximizing the number of seats it could win with a given number of votes. (Note that because the opposition normally runs too many candidates due to a failure to coordinate, most seats are won with less than a quota of votes and this calculation underestimates the optimal number of candidates.) I then subtract this value from the number of candidates that actually ran. A large value for STRATEGY indicates that too many candidates ran in the previous election than would be optimal and the LDP thus has an incentive to reduce their number. If strategic calculations play a role in the LDP’s nomination decisions, STRATEGY should have a negative effect on the probability of a non-selected candidate gaining a nomination and a positive effect on the probability of a nominated candidate losing the nomination. Note that I do not produce a point estimate of the number of candidates that should have run and therefore do not code nomination errors. I only suggest that the greater the difference between the optimal and actual number of candidates, the more likely the LDP is to act strategically.

The results are presented in Table 2. Only two variables prove significant. We first
confirm the simple rule, if you want a nomination, win the election. Somewhat surprisingly, neither factional affiliation nor finishing runner-up affects the probability of gaining a nomination. Strategic calculation, however, does play a statistically significant role. The LDP is somewhat less likely to nominate an independent in districts where they have too many candidates running already. The LDP is indeed capable of strategic behavior. That said, however, strategic behavior plays a much smaller role than does electoral performance. Figure 2 allows us to compare the effects of these two variables. Although both curves slope downwards, indicating that the probability of getting nominated declines as the values of STRATEGY rises, the gap between winners and loser is much larger than the slopes of either line.

When you have an LDP nomination, how do you keep it? The rules turn out to be a bit more complex. The first rule is, of course, do not lose. Of the 70 candidates who lost the LDP nomination, 51 or 73 per cent, lost the previous election running as an official nominee. The second rule is, do not get caught in a corruption scandal. Of the 19 incumbents who lost the nomination, 12 or 63 per cent were involved in corruption scandals. Finally, do not fight the party leadership. Of the 19 incumbents who lost the nomination, 6 or 32 per cent were involved in policy disputes with the party leadership.

Turning to the logistic regression analysis, I included those candidates who ran with the nomination in the previous election and asked what caused some to be deselected. The results, presented in Table 3, confirm the importance of these three rules.
Losing is the cardinal sin but finishing runner-up does reduce the impact of losing. Scandals have a major impact. I coded scandals into three dummy variables, SCANDAL RUMOR for the election after newspapers reported charges of corruption, LEGAL PROBLEM for the election after the police, prosecutors or courts became involved in the investigation, and CONVICTION for the election after the candidate had been convicted and had appealed that conviction. LEGAL PROBLEMS have the greatest impact, even greater than a CONVICTION. The investigative style of Japanese police means that it is usually safe to assume that, if the police or courts are involved, the party is guilty of the crime. Most of those who are convicted of a crime have already lost their nominations at an earlier stage and those that continue to run after being convicted are a highly self-selected group, not a random sample of those who have been convicted. Most of those who were involved in corruption scandals lost votes but survived. Many went on to occupy high offices within the party, including party leader and Prime Minister.

ANTI-PARTY activities also increase the probability of losing the nomination. I coded cases of candidates voting against the party line or otherwise publicly demonstrating their disagreement with the party leadership. The activities included in this variable are diverse but the analysis indicated that fighting with the leadership can result in losing the nomination. One should also note, however, that most of the cases of deselection occurred in 1993 when the LDP was battling three new conservative parties, two of which had been formed by defectors from the LDP. In 1980 69 LDP members of the Diet absented themselves from a vote of confidence allowing it to pass thus forcing an election. Nevertheless, all those who did not defect to a new party ran as independents in 1993 and were nominated in the subsequent 1996 election.

Neither factional affiliation nor strategic calculation proves to be significant. Deselection is a difficult decision for any party. It should come as no surprise that the LDP is unable to use the
deselection card strategically, as a tool for controlling the number of candidates running in a district. Deselection can only be achieved when based on reasons that would be considered a “just cause” by the other incumbents. Other incumbents might consider losing, legal problems and anti-party activities to be just causes but arguments based on party strategy would be considered to be nothing more than a smokescreen designed to disguise a power play by the leadership factions.

The LDP leadership acts precisely as the unitary actor model would predict: they use nominations strategically in an effort to run the optimal number of candidates. Despite this “rational” behavior, however, effective nomination policy is dominated by a simple rule: nominate winners and deselect losers. This decision rule could hardly be termed “irrational” but it is not the decision rule predicted for a unitary actor maximizing the number of seats won with a given number of votes.

Discussion

Let us begin with the most impressive accomplishment of the unitary actor model, the accurate identification of the long-run equilibrium of M+1. The rational choice approach is indeed a powerful tool for identifying equilibria. It is powerful because it is robust with respect to violations of the model’s assumptions. In other words, the rational choice approach correctly identifies equilibria even when the mechanism producing the equilibrium is not the maximizing behavior of a unitary actor. The most prominent example comes from evolutionary biology. The mechanism driving evolution is known. It is natural selection, the differential survival of variously endowed progeny. The most important, and most controversial, aspect of evolutionary theory is that it excludes any idea of an intended outcome. Evolution has no purpose (Dennet 1995). Evolutionary biologists do not talk about long-run equilibria but of evolutionarily stable solutions (ESS) (Maynard Smith 1982). When one calculates an ESS, however, it often turns out to also be the Nash equilibrium (Gintis 2000, Chapter 7).
In a somewhat different sense, Adam Smith’s model of the free market is another example of an equilibrium produced without a unitary actor. Again the point is that no one decides the price of the good for sale. Instead the price moves toward the social optimum “as if moved by an invisible hand”. The price of a good is not decided by any individual but emerges from the interaction of buyers and sellers in a well-regulated market.

I argue here that the M+1 equilibrium in Japan is a third example. The unitary actor model identifies the equilibrium correctly but the underlying mechanism producing this equilibrium is not party strategy but the strategic behavior of candidates. The LDP served as an arena in which the virtually unconstrained competition among candidates produced the same equilibrium that a unitary party leadership would have produced if it had existed.

Rational choice thus identifies the equilibrium correctly even though the underlying mechanism violates the assumptions of rational choice. The importance of this fact is twofold. First, the equilibria identified by unitary actor models are usually correct. Second, the fact that a unitary actor model correctly identifies the equilibrium cannot be taken as evidence for the accuracy of the assumptions of the model.

The second major accomplishment of the unitary actor model is the accurate identification of the preferences of the party leadership (as well as, one might add, the preferences of the Japan Socialist Party and Irish party leaderships operating under a similar electoral system). The LDP leadership used nomination policy in precisely the strategic fashion predicted by the model. Though there is no reason to think that the leadership understood the M+1 rule itself, let alone the mathematics behind it, they clearly understood the fundamental point that ranritsu can result in tomodaore. The leadership therefore waged a war against ranritsu and the number of candidates they wished to run appears to have been precisely the optimum predicted by the unitary actor model. Yet the LDP leadership lost its war against ranritsu. They were seldom capable of preventing LDI
candidates from running. They wanted to run the optimal number of candidates but did not have the
capacity to enforce their preferences.

The candidate model does not address the preferences of the party leadership. A fully
developed candidate model will address the preferences of candidates, presumably by assuming that
candidates wish to get elected and re-elected. However, even a fully developed model should be less
concerned with identifying the preferences of candidates that with identifying the decision rules by
which they implement those preferences. The invocation to “maximize your probability of being
(re)elected” may be good advice but it is far too abstract to be practical decision rule. The analysis so
far indicates that the order of finish in the previous election has a large impact on the decision
whether to run again but we want a more behaviorally realistic decision rule, something that
candidates might actually use.

Finally, the candidate model addresses several issues left untouched by the unitary actor
model. The strongest evidence against the unitary actor model and in favor of a candidate model is
the prominence of LDI candidates. A candidate-centered model finds it easier to explain why
candidates who are refused the party nomination might run anyway in defiance of the party
leadership: they have a chance to win and, if they win, they expect to be nominated *ex post*. In
addition, I have shown that effective LDP nomination policy is dominated by two simple decision
rules: nominate winners and deselect losers. These rules make the LDP look less like a unitary actor
than an arena for candidate competition.

As presented here, the candidate model also addresses the issue of time. Unitary actor
models implemented through the mathematics of maximization yield a long-run equilibrium value
but do not address the issue of how long it will take to reach that equilibrium. The “long run” is left
undefined. A formal model of candidate decision rules implemented through an agency based
simulation cannot avoid the issue of time. Potentially, such simulations may be able to tell us what
will happen next even if they will not necessarily tell us what will happen “in the end”.
References

Christensen, Raymond V. (2003) “Voting for Friends and Neighbors, Regionalism as an Explanation of the Personal Vote in Japan” manuscript.

Table 1: The Probability of Jiban Exit for LDP Candidates

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>M+0</td>
<td>1.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>M+1</td>
<td>14.4%</td>
<td>15.0%</td>
</tr>
<tr>
<td>M+2</td>
<td>34.1%</td>
<td>30.0%</td>
</tr>
<tr>
<td>M+3</td>
<td>51.6%</td>
<td>45.0%</td>
</tr>
<tr>
<td>M+4</td>
<td>58.3%</td>
<td>60.0%</td>
</tr>
<tr>
<td>M+5</td>
<td>75.0%</td>
<td>75.0%</td>
</tr>
</tbody>
</table>
Table 2:

How to Gain an LDP Nomination

<table>
<thead>
<tr>
<th>Factor</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Won Last Election</td>
<td>2.991***</td>
</tr>
<tr>
<td>Runner-up</td>
<td>-0.535</td>
</tr>
<tr>
<td>PM SG Faction</td>
<td>0.211</td>
</tr>
<tr>
<td>Strategy</td>
<td>-0.468**</td>
</tr>
<tr>
<td>constant</td>
<td>-1.685***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measures</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1,609</td>
</tr>
<tr>
<td>Cox & Snell</td>
<td>0.292</td>
</tr>
<tr>
<td>Nagelkerke</td>
<td>0.389</td>
</tr>
</tbody>
</table>

* = significant at .10
** = significant at .05
*** = significant at .001
Table 3:

How to Lose an LDP Nomination

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incumbent</td>
<td>-5.747***</td>
<td></td>
</tr>
<tr>
<td>Runner-up</td>
<td>-1.733***</td>
<td></td>
</tr>
<tr>
<td>Scandal Rumor</td>
<td>3.243***</td>
<td></td>
</tr>
<tr>
<td>Legal Problem</td>
<td>6.912***</td>
<td></td>
</tr>
<tr>
<td>Conviction</td>
<td>4.315**</td>
<td></td>
</tr>
<tr>
<td>Anti-Party</td>
<td>3.800***</td>
<td></td>
</tr>
<tr>
<td>PM SG Faction</td>
<td>-0.417</td>
<td></td>
</tr>
<tr>
<td>Strategy</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>-0.662*</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>3,386</td>
<td></td>
</tr>
<tr>
<td>Cox & Snell</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Nagelkerke</td>
<td>0.433</td>
<td></td>
</tr>
</tbody>
</table>

* = significant at .10
** = significant at .05
*** = significant at .001
Figure 1: Simulation Results
Figure 2: Estimated Probability of Gaining the Nomination
Appendix A: The Simulation
(Implemented in Visual Basic)

Sub election()

Dim vot(10), vot2(10), pty(10)
Dimcdnr(10, 15), rank2(10, 15)
Dim vldp(5), vopp(5), ret(10), nc(10), nrcands(15)
Randomize
page = 1

M = 5 'set district magnitude
q = 60000 'set quota
ldpv = 180000 'set LDP total vote
oppv = 180000 'set opposition total vote
ldpc = 5 'set number of LDP candidates
oppc = 5 'set number of opposition candidates
nrc = ldpc + oppc 'calculate total number of candidates

' assignment of candidates
For i = 1 To nrc
 nc(i) = i
 ret(i) = -1
 If i <= ldpc Then
 pty(i) = 0
 Else
 pty(i) = 1
 End If
Next i

For k = 1 To 15 'running fifteen elections

For i = 1 To nrc
 vot(i) = 0
 nrcands(i) = 0
Next i
'random voting for LDP candidates
For i = 1 To ldpv
 r = Int(1 + ldpc * Rnd())
 If ret(r) < 0 Then
 vot(r) = vot(r) + 1
 Else
 vot(r) = vot(r)
 End If
Next i

'random voting for opposition candidates
For i = 1 To oppv
 r = Int(ldpc + 1 + oppc * Rnd())
 If ret(r) < 0 Then
 vot(r) = vot(r) + 1
 Else
 vot(r) = vot(r)
 End If
Next i

'ranking candidates
For i = 1 To nrc
 d = 0
 For j = 1 To nrc
 If d <= vot(j) Then
 jj = j
 d = vot(jj)
 End If
 Next j
 vot2(i) = d
 vot(jj) = -10
 cdnr(i, k) = jj
 rank2(jj, k) = i
Next i
'counting candidates
For i = 1 To 10
 If ret(cdnr(i, k)) = -1 Then
 nrcands(k) = nrcands(k) + 1
 Else: nrcands(k) = nrcands(k)
 End If
Next i

'retiring candidates
mm = 0
For i = 1 To nrc
 If i <= M + 1 Then
 ret(cdnr(i, k)) = -1
 Else
 If ret(cdnr(i, k)) = -1 Then
 If (mm + 1) * 0.15 > Rnd() Then
 ret(cdnr(i, k)) = 1
 mm = mm + 1
 Else
 ret(cdnr(i, k)) = -1
 End If
 End If
 End If
Next i

Worksheets(page).Cells(1, k) = nrcands(k)

Next k

End Sub